Paulistine--The Functional Duality of a Wasp Venom Peptide Toxin.
نویسندگان
چکیده
It has been reported that Paulistine in the venom of the wasp Polybia paulista co-exists as two different forms: an oxidized form presenting a compact structure due to the presence of a disulfide bridge, which causes inflammation through an apparent interaction with receptors in the 5-lipoxygenase pathway, and a naturally reduced form (without the disulfide bridge) that exists in a linear conformation and which also causes hyperalgesia and acts in the cyclooxygenase type II pathway. The reduced peptide was acetamidomethylated (Acm-Paulistine) to stabilize this form, and it still maintained its typical inflammatory activity. Oxidized Paulistine docks onto PGHS2 (COX-2) molecules, blocking the access of oxygen to the heme group and inhibiting the inflammatory activity of Acm-Paulistine in the cyclooxygenase type II pathway. Docking simulations revealed that the site of the docking of Paulistine within the PGHS2 molecule is unusual among commercial inhibitors of the enzyme, with an affinity potentially much higher than those observed for traditional anti-inflammatory drugs. Therefore, Paulistine causes inflammatory activity at the level of the 5-lipooxygenase pathway and, in parallel, it competes with its reduced form in relation to the activation of the cyclooxygenase pathway. Thus, while the reduced Paulistine causes inflammation, its oxidized form is a potent inhibitor of this activity.
منابع مشابه
Molecular Characterization of a Three-disulfide Bridges Beta-like Neurotoxin from Androctonus crassicauda Scorpion Venom
Scorpion venom is the richest source of peptide toxins with high levels of specific interactions with different ion-channel membrane proteins. The present study involved the amplification and sequencing of a 310-bp cDNA fragment encoding a beta-like neurotoxin active on sodium ion-channel from the venom glands of scorpion Androctonus crassicauda belonging to the Buthidae family using r...
متن کاملCharacterization of cDNA sequence encoding for a novel sodium channel -toxin from the Iranian scorpion Mesobuthus eupeus venom glands
The venoms of Buthidae scorpions are known to contain basic, single-chain protein -toxins consisting of 60-70 amino acid residues that are tightly cross-linked by four disulfide bridges. Total RNA was extracted from the venom glands of scorpion Mesobuthus eupeus collected from the Khuzestan province of Iran and then cDNA was synthesized with the modified oligo (dT) primer and extracted total R...
متن کاملPartial Purification and Characterization of Anticoagulant Factor from the Snake (Echis carinatus) Venom
Objective(s): Snake venoms contain complex mixture of proteins with biological activities. Some of these proteins affect blood coagulation and platelet function in different ways. Snake venom toxin may serve as a starting material for drug design to combat several pathophysiological problems such as cardiovascular disorders. In the present study, purification of anticoagulation facto...
متن کاملRadioiodination of a natural toxin (ICD-85) for fighting cancer
Introduction: Many molecules can be labeled by iodine. Some of labeled substances are used for investigations of cancer treatment, biodistribution study in body, receptor binding, secrete pathway etc. Peptides are biomolecules and can be labeled by 131Iodine. ICD- 85 is a tri-peptide derived from Iranian brown snake venom and scorpion venom. This tri-peptide treats cancer by i...
متن کاملMastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins).
Mastoparan, a peptide toxin from wasp venom, is a nonspecific secretagogue. We show here that mastoparan increases the GTPase activity and the rate of nucleotide binding of several purified GTP-binding regulatory proteins (G proteins) whose function is to couple cell-surface receptors to intracellular mediators. Mastoparan accelerated guanosine-5'-(3-O-thiotriphosphate binding and consequent G ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxins
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2016